Answers to examination-style questions

Answers

1 (a) (i) $1.30,2.75,4.35,5.75,7.15,8.70$
(ii) See Figure EA 7.1.1 below axes labelled correctly correct units shown on axes points plotted correctly best fit line drawn
(b) (i) Taking moments about X gives: $S D=W d+0.5 D W_{\mathrm{o}}$, where W_{o} is the weight of the beam. Dividing each term by D gives the required equation.
(ii) Gradient $=W / D=0.0184 \mathrm{~N} \mathrm{~mm}^{-1}$ therefore
$W=480 \mathrm{~mm} \times 0.0184 \mathrm{~N} \mathrm{~mm}^{-1}=8.83 \mathrm{~N}$
(c) (i) For the smallest readings,
$\%$ error for $d=1 / 40 \times 100=2.5 \%$,
$\%$ error for $S=0.1 / 1.3 \times 100=7.7 \%$
(ii) Repeat the measurements for the same distances several more times to obtain a more reliable value for the mean support force at each distance.

2 (a) correct diagram drawn to a suitable scale magnitude of resultant $=13.6(\pm 0.3) \mathrm{N}$ required angle $=13(\pm 2)^{\circ}$
(b) $R^{2}=9.6^{2}+4.8^{2}$
gives $R=10.7 \mathrm{~N}$

Marks Examiner's tips

1

2 Knowledge and understanding of the principle of moments and forces has to be used in part (b) to derive a theoretical equation in order to explain the graph and use it to find the weight of the load

Part (c) asks about the reliability of the measurements and the accuracy of the result.
In part a, two sets of measurements are given of the newtonmeter reading for the load at different distances from the end of the beam on the pillar.
The mean value of each distance measurement has to be calculated then used to plot a graph of the support force against this distance.

You need to know how to find the when they act at any angle to each other.

But you only need to know how to calculate the resultant when the vectors are at 90° to each other.

Answers to examination-style questions

Answers

3 (a) (i) horizontal component
$=850 \times \cos 42^{\circ}$
$=630 \mathrm{~N}$
(ii) vertical component
$=850 \times \sin 42^{\circ}$
$=570 \mathrm{~N}$
(iii) weight of girder
$=$ sum of vertical components of T
$=2 \times 570=1100 \mathrm{~N}(1140)$
(b) the weight acts vertically downwards at the centre of the girder

4 (a) the moment of a force about a point is the product of the force
and the perpendicular distance from the point to the line of action of the force
(b) (i) application of definition gives $46=F \times 0.25 \cos 40^{\circ}$
$\therefore \mathrm{F}=240 \mathrm{~N}$
(ii) the moment of F increases to a maximum (when the crank is horizontal) and then decreases because the perpendicular distance increases and then decreases

5 (a) Forces on plank:
two arrows vertically downwards to represent weight of student and load one arrow vertically downwards in centre of plank to represent weight of plank one arrow vertically upwards from the log to represent the upward force (reaction) at the pivot

Marks Examiner's tips

1 The girder is stationary, so there is no resultant vertical force.

1 You need to know this definition. 'Moment $=$ force \times distance' is how we usually apply the definition, but it is important to remember that the distance is the perpendicular distance. (Note also that 'work $=$ force \times distance', but in the case of work the distance has to be in the same direction as the force.)

1 The perpendicular distance from O to the line of action of F is the horizontal

1 You are asked to state and explain, so your answer must do both. As the crank rotates, the perpendicular distance from
1 O to the line of action of F increases over the first 40° and then decreases over the next 40°.
The vertical force exerts no moment when the crank is in the vertical position (directly above or below O).

1 The first marking point should be clear and obvious. The weight of the plank acts at its centre of mass, exactly half way
You must know how to find the resolved components of vectors. If the required component is alongside the angle you are given, you need the cosine of the angle. If not, you need the sine.

For a uniform girder, the centre of mass is mid-way along its length. The weight acts vertically downwards through this point. component of 0.25 m , which is 0.25 cos 40°. along it because it has uniform crosssection. Don't overlook the upwards reaction at the pivot.

Answers to examination-style questions

Answers

(b) Taking moments about the pivot: clockwise moment
$=(25 \times 9.81 \times 1.0)+(L \times 2.5)$ where $L=$ load in N
equated with anticlockwise moment $=(65 \times 9.81 \times 0.50)$ gives load $L=29 \mathrm{~N}$
(c) as the student walks towards the log, the anticlockwise moment decreases the clockwise moment is now greater than the anticlockwise, so the plank rotates clockwise until the load touches the ground

Marks Examiner's tips

1 Two of the forces produce a clockwise moment about the pivot, balanced by the moment due to the weight of the student on the opposite side. The upwards

1 Rotation is caused by the moment of a force, not by force alone. Your explanation should refer to the effect of the student's movement on the moments acting about the pivot. The student does not have 'less weight' as he moves towards the pivot!

