Answers to examination-style questions

Answers

1 (a) $100 \mathrm{~km} \mathrm{~h}^{-1}=\frac{100 \times 1000}{3600}=27.8 \mathrm{~m} \mathrm{~s}^{-1}$ using $v=u+a t$ gives $27.8=0+5.8 a$ \therefore acceleration $a=4.8 \mathrm{~m} \mathrm{~s}^{-2}$
(b) using $s=\frac{1}{2}(u+v) t$ gives
$s=\frac{1}{2}(0+27.8) \times 5.8$
\therefore distance $s=81 \mathrm{~m}$

2 (a) AB : uniform acceleration
BC : constant velocity

CD: uniform deceleration

DE: stationary
EF: uniform acceleration in the opposite direction
(b) displacement is equal to the area enclosed by the graphs and the time axis
(c) distance is a scalar and is represented by the total area under both the positive and negative portions of the graph whereas displacement is a vector and the areas above and below the $v=0$ line are equal and therefore cancel

3 (a) using $v=u+a t$ gives $12=4+6.0 a$ \therefore acceleration $a=1.3 \mathrm{~m} \mathrm{~s}^{-2}$
(b) Graph to show:

- axes labelled 'speed $/ \mathrm{m} \mathrm{s}^{-1}$ ' (vertically) and 'time/s' (horizontally) with points $(0,4)$ and $(6,12)$ both marked
- these two points joined by a straight line
(c) distance travelled = area under graph $=$ area of trapezium with vertical sides of $4 \mathrm{~m} \mathrm{~s}^{-1}$ and $12 \mathrm{~m} \mathrm{~s}^{-1}=\frac{1}{2} \times(4+12) \times 6.0$ $=48 \mathrm{~m}$

Marks Examiner's tips

1
1 the uniform acceleration equations.

1 The gradient is negative and constant, whilst the velocity is negative and increasing uniformly.

1 This is another feature of a v - t graph that you need to know.

1 The toy train travels a certain distance forward and stops. It then travels an equal distance backwards, returning to its
1 starting point. Its displacement from the starting point is zero but it has travelled a distance out, and the same distance back.

1 Or use $\frac{\Delta v}{\Delta t}$.
2 By convention, time is plotted horizontally. You are told that the acceleration is uniform, meaning that the line must have a constant gradient (i.e. be straight).

1 In this example the area is that of a
1 trapezium instead of a simple triangle. This solution is equivalent to using $s=\frac{1}{2}(u+v) t$.

Answers to examination-style questions

Marks Examiner's tips

Answers

4 (a) (i) using $v=u+a t$ gives $0=4.5+3600 a$ \therefore acceleration $a=-1.3 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2}$ and deceleration $=1.3 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2}$
(ii) using $s=\frac{1}{2}(u+v) t$ gives $s=\frac{1}{2}(4.5+0) \times 3600$ \therefore distance $s=8100 \mathrm{~m}$
(b) Graph to show:

- axes labelled 'distance/m' (vertically) and 'time/s' (horizontally) and line showing distance increasing with time
- gradual curve of decreasing slope
(c) Relevant points include:
- gradient of graph = speed
- speed decreases giving a decreasing gradient
- gradient is zero when stationary

5 (a) (i) using $v=u+a t$ gives $29=0+2.0 a$ \therefore acceleration $a=14.5 \mathrm{~m} \mathrm{~s}^{-2}$
(ii) using $s=\frac{1}{2}(u+v) t$ gives $s=\frac{1}{2}(0+29) \times 2.0=29 \mathrm{~m}$
(iii) using distance $=($ speed $) \times($ time $)$ gives $\mathrm{s}=29 \times 15=435 \mathrm{~m}$
(b) (i) Second graph drawn to show:

- starting at 0.5 s (i.e. reaction time)
- straight line from $(0.5,0)$ to $(2.5,25)$
- horizontal straight line beyond 2.5 s
(ii) distance travelled by antelope in 17 s
$=\left(\frac{1}{2} \times 2.0 \times 25\right)+(14.5 \times 25)$
$=387.5(=390) \mathrm{m}$
(iii) distance travelled by cheetah in 17 s
$=\left(\frac{1}{2} \times 2.0 \times 29\right)+(15 \times 29)=464 \mathrm{~m}$
distance apart $=(100+387.5)-464$
$=23.5(=24) \mathrm{m}$

1
1

1
1
2 It is important to show clearly what you are plotting by labelling the axes properly. The speed of the tanker is assumed to decrease uniformly. Speed is equal to the gradient of a distance-time graph; hence the gradient decreases. If
2 the line is drawn properly, the final part ought to be horizontal.

1 Part a gives further practice in the use of 1 the uniform acceleration equations. In

3 This graph is of a similar shape to the original one, but it starts later and is lower, displaced to the right.

1
1 Distance travelled = area under graph. The area under the graph consists of a triangle and a rectangle.
1 You have to do a lot of work for this last mark. The steps taken in (ii) are repeated, but this time for the cheetah, and then you must remember that the antelope was 100 m ahead of the cheetah at the start.

1 The lump of lead is released (not thrown downwards), telling you that its initial
Note that $1 \mathrm{~h}=3600 \mathrm{~s}$. A deceleration is a negative acceleration. A negative value for a (which comes from a correct substitution into $v=u+a t$) leads to a positive value for deceleration.
1 'While slowing to a stop' means 'until its final speed v is 0^{\prime}. (iii) the cheetah is moving at constant speed, so the simpler equation 'distance $=($ speed $) \times($ time $)$ ' suffices. Interestingly, the cheetah is accelerating at about 1.5 g . \therefore acceleration of free fall $g(=a)$ $=9.6 \mathrm{~m} \mathrm{~s}^{-2}$
velocity u is zero. s and t are known; you have to find a.

Answers to examination-style questions

Answers

(b) a lower value would be obtained for g because air resistance has a greater effect on the tennis ball resulting in a smaller resultant downwards force on the tennis ball
(c) Second graph to show:

- a curve of decreasing gradient, always below the original line
- initial gradient the same as the original line, but second graph finishing at a later time

7 (i) horizontal velocity remains $70 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) using $v=u+a t$ gives vertical velocity $v_{\mathrm{V}}=0+(9.81 \times 2.0)$

$$
=19.6 \mathrm{~m} \mathrm{~s}^{-1}
$$

(iii) resultant velocity $V=\sqrt{\left(v_{\mathrm{v}}{ }^{2}+v_{\mathrm{H}}{ }^{2}\right)}$
$=\sqrt{\left(19.6^{2}+70^{2}\right)}=73 \mathrm{~m} \mathrm{~s}^{-1}$
direction is given by $\tan \theta=\frac{19.6}{70}$ from which $\theta=15.6^{\circ}$ to the horizontal

Marks Examiner's tips

1

1

1 size, air resistance has a much greater effect on the tennis ball because it is lighter.

2 The tennis ball experiences a decreasing acceleration: hence its velocity continues to increase but by progressively smaller amounts. The tennis ball therefore takes a longer time to fall to the ground.

1 If air resistance is ignored, the horizontal velocity must be unaffected.

1 The vertical motion is accelerated at g, which is constant. The uniform
1 acceleration equations can therefore be applied.

1 The resultant velocity is found by adding its vector components.

1 A quick sketch of the vectors may help you to see which trigonometric ratio to use.

