Chapter 11 Past Paper Questions - Answers

- 1. (a) Hooke's law: the extension is proportional to the force applied (1) up to the limit of proportionality or elastic limit [or for small extensions] (1)
- 2

(b) (i) (use of
$$E = \frac{F}{A} \frac{l}{e}$$
 gives) $e_s = \frac{80 \times 0.8}{2.0 \times 10^{11} \times 2.4 \times 10^{-6}}$ (1)
= 1.3×10^{-4} (m) (1) $(1.33 \times 10^{-4}$ (m))

$$e_{\rm b} = \frac{80 \times 1.4}{1.0 \times 10^{11} \times 2.4 \times 10^{-6}} = 4.7 \times 10^{-4} \,(\text{m}) \,(\textbf{1}) \,(4.66 \times 10^{-4} \,(\text{m}))$$

- total extension = 6.0×10^{-4} m (1)
- (ii) $m = \rho \times V$ (1) $m_s = 7.9 \times 10^3 \times 2.4 \times 10^{-6} \times 0.8 = 15.2 \times 10^{-3}$ (kg) (1) $m_b = 8.5 \times 10^3 \times 2.4 \times 10^{-6} \times 1.4 = 28.6 \times 10^{-3}$ (kg) (1) (to give total mass of 44 or 43.8×10^{-3} kg)
- 7

(c) (use of
$$m = \rho A l$$
 gives) $l = \frac{44 \times 10^{-3}}{8.5 \times 10^3 \times 2.4 \times 10^{-6}}$ (1)
= 2.2 m (1) (2.16 m)
(use of mass = 43.8 × 10⁻³ kg gives 2.14 m)

[11]

- 2. (a) (i) strain = 0.026 (1) $E = 6.92 \times 10^9 \,\text{Pa}$ (1)
 - (ii) $A = 1.96 \times 10^{-7} \text{ (m}^2\text{) (1)}$ stress = $230 \times 10^8 \text{ Pa (1)}$
 - (iii) breaking strain = 0.044 (1)

5

shape overall (1)

- (i) straight line (1) 0 to (0.026, 1.8) (1)
- (ii) curve (1) to (0.044, 2.3) (1)

Max 4

[9]

3. (i) appropriate discussion of energy conservation (1) $\Delta \ p.e. = 2.5 \times 10^{-2} \times 9.8 \times 1.2 \ (1) \ (= 0.29 \ J)$

(ii)
$$F = \frac{2E_p}{e}$$
 (1) = 590N (1)

(iii)
$$A = 3.1 \times 10^{-6} \text{ (m}^2\text{) (1)}$$

stress = $1.9 \times 10^8 \text{ Pa (1)}$

(iv) strain =
$$\frac{e}{L} = \frac{0.001}{1.2} = 8.3 \times 10^{-4} \, (1)$$

(v)
$$E = \frac{\text{stress}}{\text{strain}} = \frac{1.9 \times 10^8}{8.3 \times 10^{-4}}$$
 (1) = 2.3 × 10¹¹ Pa (1)

[9]

Chapter 11 Past Paper Questions - Answers

1. (a) Hooke's law: the extension is proportional to the force applied (1) up to the limit of proportionality or elastic limit [or for small extensions] (1)

2

(b) (i) (use of
$$E = \frac{F}{A} \frac{l}{e}$$
 gives) $e_s = \frac{80 \times 0.8}{2.0 \times 10^{11} \times 2.4 \times 10^{-6}}$ (1) $= 1.3 \times 10^{-4}$ (m) (1) $(1.33 \times 10^{-4}$ (m))

$$e_{\rm b} = \frac{80 \times 1.4}{1.0 \times 10^{11} \times 2.4 \times 10^{-6}} = 4.7 \times 10^{-4} \,(\text{m}) \,(\textbf{1}) \,(4.66 \times 10^{-4} \,(\text{m}))$$

total extension = 6.0×10^{-4} m (1)

(ii)
$$m = \rho \times V$$
 (1)
 $m_{\rm s} = 7.9 \times 10^3 \times 2.4 \times 10^{-6} \times 0.8 = 15.2 \times 10^{-3}$ (kg) (1)
 $m_{\rm b} = 8.5 \times 10^3 \times 2.4 \times 10^{-6} \times 1.4 = 28.6 \times 10^{-3}$ (kg) (1)
(to give total mass of 44 or 43.8×10^{-3} kg)

7

2

(c) (use of
$$m = \rho A l$$
 gives) $l = \frac{44 \times 10^{-3}}{8.5 \times 10^{3} \times 2.4 \times 10^{-6}}$ (1)
= 2.2 m (1) (2.16 m)
(use of mass = 43.8×10^{-3} kg gives 2.14 m)

[11]

2. (a) (i) strain = 0.026 (1)

$$E = 6.92 \times 10^9 \,\text{Pa}$$
 (1)

(ii)
$$A = 1.96 \times 10^{-7} \text{ (m}^2\text{) (1)}$$

stress = $230 \times 10^8 \text{ Pa (1)}$

(iii) breaking strain =
$$0.044$$
 (1)

5

shape overall (1)

- (i) straight line (1) 0 to (0.026, 1.8) (1)
- (ii) curve (1) to (0.044, 2.3) (1)

Max 4

[9]

3. (i) appropriate discussion of energy conservation (1) $\Delta \text{ p.e.} = 2.5 \times 10^{-2} \times 9.8 \times 1.2 \text{ (1)} (= 0.29 \text{ J})$

(ii)
$$F = \frac{2E_p}{e}$$
 (1) = 590N (1)

(iii)
$$A = 3.1 \times 10^{-6} \text{ (m}^2\text{) (1)}$$

stress = $1.9 \times 10^8 \text{ Pa (1)}$

(iv) strain =
$$\frac{e}{L} = \frac{0.001}{1.2} = 8.3 \times 10^{-4} \, (1)$$

(v)
$$E = \frac{\text{stress}}{\text{strain}} = \frac{1.9 \times 10^8}{8.3 \times 10^{-4}}$$
 (1) = 2.3 × 10¹¹ Pa (1)

[9]