1. (a) (i) a quantity that has magnitude only
[or has no direction] (1)
(ii) any two: e.g. energy (1)
temperature (1) 3
(b) (i)
(b) (i)

$$\int_{0}^{1} \int_{0}^{1} \int_$$

2. (a) (i)

 $W_{\rm p} = 88({\rm N})$ and $W_{\rm x} = 29({\rm N})$ (1)

F = 44 + 29 = 73 N (1) left hand support F = 44N (1)

(ii) right hand support, moments about left hand support $88 \times 0.75 + 29 \times 0.5 = F \times 1.5$ gives F = 54 N (1) left hand support $F_{\rm L} + F_{\rm R} = 118$ (N) (1) so $F_{\rm L} = 64$ N (1)

[6]

6

right hand support

3.	(a)	 (i) horizontal component of the tension in the cable (1) (ii) vertical component of the tension in the cable (1) 	2	
	(b)	(i) $T_{\text{vert}} = 250 \times 9.81 = 2500 \text{ N}$ (1) (2452 N) (ii) $T_{\text{horiz}} = 1200 \text{ N}$ (iii) $T^2 = (1200)^2 + (2500)^2$ (1) $T = (1.44 \times 10^6 + 6.25 \times 10^6)^{1/2} = 2800 \text{ N}$ (1) (2773 N) (if use of $T_{\text{vert}} = 2450 \text{ N}$ then $T = 2730 \text{ N}$) (allow C.E. for values from (b) (i) and (b)(ii)) (iv) $\tan \theta = \frac{1200}{2500}$ (1) $\theta = 26^\circ$ (1)		
		(allow C.E. for values from (b) (i) and (b)(ii))	6	[8]
4.	(a)	component (parallel to ramp) = $7.2 \times 10^3 \times \sin 30$ (1) (= 3.6×10^3 N)	1	
	(b)	mass = $\frac{7.2 \times 10^3}{9.81}$ = 734 (kg) (1) $a = \frac{3600}{734}$ = 4.9(1) m s ⁻² (1)	2	
	(c)	(use of $v^2 = u^2 + 2as$ gives) $0 = 18^2 - (2 \times 4.9 \times s)$ (1) s = 33(.1) m (1) (allow C.E. for value of <i>a</i> from (b))	2	
	(d)	frictional forces are acting (1) increasing resultant force [or opposing motion] (1) hence higher deceleration [or car stops quicker] (1) energy is lost as thermal energy/heat (1)	Max 2	[7]

1. (a) (i) a quantity that has magnitude only
[or has no direction] (1)
(i) any two: e.g. energy (1)
temperature (1) 3
(b) (i)
(b) (i)

$$\int_{0}^{0} \int_{9.5}^{9.5}$$

scale (1)
 $5 \text{ N and } 9.5 \text{ N (1)}$
correct answer (8.1 N ± 0.2 N) (1)
[or $9.5^{2} = 5.0^{2} + F^{2}$ (1)
 $F^{2} = 90.3 - 25$ (1)
 $F = 8.1 \text{ N (1)}$ (8.07 N)]
(i) $\cos \theta = \frac{5.0}{9.5}$
gives $\theta = 58^{\circ}$ (1) (± 2° if taken from scale diagram) 4
[7]

2. (a) (i)

right hand support

 $W_{\rm p} = 88({\rm N})$ and $W_{\rm x} = 29({\rm N})$ (1) $F = 44 + 29 = 73 {\rm N}$ (1) left hand support $F = 44{\rm N}$ (1)

(ii) right hand support, moments about left hand support $88 \times 0.75 + 29 \times 0.5 = F \times 1.5$ gives F = 54 N (1) left hand support $F_{\rm L} + F_{\rm R} = 118$ (N) (1) so $F_{\rm L} = 64$ N (1)

[6]

6

3.	(a)	 (i) horizontal component of the tension in the cable (1) (ii) vertical component of the tension in the cable (1) 	2	
	(b)	(i) $T_{\text{vert}} = 250 \times 9.81 = 2500 \text{ N}$ (1) (2452 N) (ii) $T_{\text{horiz}} = 1200 \text{ N}$ (iii) $T^2 = (1200)^2 + (2500)^2$ (1) $T = (1.44 \times 10^6 + 6.25 \times 10^6)^{1/2} = 2800 \text{ N}$ (1) (2773 N) (if use of $T_{\text{vert}} = 2450 \text{ N}$ then $T = 2730 \text{ N}$) (allow C.E. for values from (b) (i) and (b)(ii)) (iv) $\tan \theta = \frac{1200}{2500}$ (1) $\theta = 260 \text{ (f)}$		
		$\theta = 26^{\circ}$ (1) (allow C.E. for values from (b) (i) and (b)(ii))	6	[8]
4.	(a)	component (parallel to ramp) = $7.2 \times 10^3 \times \sin 30$ (1) (= 3.6×10^3 N)	1	
	(b)	mass = $\frac{7.2 \times 10^3}{9.81}$ = 734 (kg) (1) $a = \frac{3600}{734}$ = 4.9(1) m s ⁻² (1)	2	
	(c)	(use of $v^2 = u^2 + 2as$ gives) $0 = 18^2 - (2 \times 4.9 \times s)$ (1) s = 33(.1) m (1) (allow C.E. for value of <i>a</i> from (b))	2	
	(d)	frictional forces are acting (1) increasing resultant force [or opposing motion] (1) hence higher deceleration [or car stops quicker] (1) energy is lost as thermal energy/heat (1)	Max 2	[7]