Chapter 8 Past Paper Questions

1. The graph represents the motion of two cars, A and B, as they move along a straight, horizontal road.

(a)	Desc	ribe the motion of each car as shown on the graph.	
	(i)	car A:	
	(ii)	car B:	
	, ,		(3)
(b)	Calc	ulate the distance travelled by each car during the first 5.0 s.	
	(i)	car A:	
	/!! \		
	(ii)	car B:	

(4)

2.	The Thrust SSC car raised the world land speed record in 1997. The mass of the car wa 1.0×10^4 kg. A 12s run by the car may be considered in two stages of constant accelera Stage one was from 0 to 4.0 s and stage two 4.0 s to 12 s.					
	(i)		age one the car accelerates from $$ rest to 44 m $$ s $^{-1}$ in 4.0 s. Calculate the accelerate uced and the force required to accelerate the car.	on		
	(ii)		age two the car continued to accelerate so that it reached $280~\mathrm{m~s^{-1}}$ in a further . Calculate the acceleration of the car during stage two.			
	(iii)	Calcu	ulate the distance travelled by the car from $$ rest to reach a speed of 280 $\mathrm{m\ s}^{-1}$.			
			(Tota	l 6 marks)		
3.	(a)	(i)	Define acceleration.			
		(ii)	State why acceleration is a vector quantity.			
	(b)	State	what feature of a velocity-time graph may be used to calculate	(2)		
		(i)	acceleration,			
		(ii)	displacement.			

(2)

(c) The graph in **Figure 1** shows how the displacement of a runner from a fixed point, along a straight track, varies with time.

Figure 1

Without calculation, sketch on the grid in **Figure 2** a graph to show how the velocity of the same runner varies over the same period. The time scales are the same on both graphs.

Figure 2

(4) (Total 8 marks) **4.** The diagram below shows the path of a ball thrown horizontally from the top of a tower of height 24 m which is surrounded by level ground.

- (a) Using two labelled arrows, show on the diagram above the direction of the velocity, v, and the acceleration, a, of the ball when it is at point **P**.
- (b) (i) Calculate the time taken from when the ball is thrown to when it first hits the ground. Assume air resistance is negligible.

(2)

(ii) The ball hits the ground 27 m from the base of the tower. Calculate the speed at which the ball is thrown.