Chapter 9 Past Paper Questions - Answers

Chapter 91 ast 1 aper Questions - Answers									
1.	(i)	 weight greater than air resistance [or (initially only) weight/gravity acting] (1) hence resultant force downwards or <u>therefore</u> acceleration (2nd law) (1) air resistance or upward force increases with speed (1) until air resistance equals weight or resultant force is zero (1) leaf moves at constant velocity (1st law) [or 1st law applied correctly] (1) 							
	(ii)	air res air res air res	max 5 QWC 2						
2.	(a)	(i) (ii)	$(E_{\rm K} = \frac{1}{2} mv^2 =) 0.5 \times 68 \times 16^2$ (1) = 8700 or 8704(J) (1) $(\Delta E_{\rm P} = mg\Delta h =) 68 \times 9.8(1) \times 12$ (1) = 8000 or 8005 (J) (1)						
	(b)	(iii) (i)	any three from gain of kinetic energy > loss of potential energy (1) (because) cyclist does work (1) energy is wasted (on the cyclist and cycle) due to air resistance or friction or transferred to thermal/heat (1) KE = GPE + W – energy 'loss' (1) (owtte) energy wasted (= 8000 + 2400 - 8700) = 1700(J) (1) $(u = 16 \text{ m s}^{-1}, s = 160 \text{ m}, v = 0, \text{ rearranging } s = \frac{1}{2} (u + v) t \text{ gives})$ $160 = \frac{1}{2} \times 16 \times t \text{ or } t = \frac{2s}{(u + v)} \text{ or correct alternative}$ $\frac{2 \times 160}{16}$ (gets 2 marks) (1) = 20s (1)	7					
		(ii)	acceleration $a = (\frac{v-u}{t}) = \frac{0-16}{20} \operatorname{ecf}(b)(i)(1) = (-) 0.80 (\mathrm{m s}^{-2})$						

resultant force $F = ma = 68 \times (-) 0.80$ (1) = (-) 54 (N) (1) or 54.4 or (work done by horizontal force = loss of kinetic energy work done = force × distance gives)

force =
$$\frac{(\text{loss of kinetic})\text{energy}}{\text{distance}}(\mathbf{1}) = \frac{8700 \text{ J}}{160 \text{ m}} \text{ ecf (a) (i) (1)} = 54 \text{ (N) (1)} \qquad 6$$

[13]

[5]

Chapter 9 Past Paper Questions - Answers

1.	(i)	weig hence air re until leaf r [or 1:	the greater than air resistance [or (initially only) weight/gravity acting] (1) e resultant force downwards or <u>therefore</u> acceleration (2nd law) (1) esistance or upward force increases with speed (1) air resistance equals weight or resultant force is zero (1) moves at constant velocity (1st law) st law applied correctly] (1)		
	(ii)	air re air re air re	esistance depends on shape [or other correct statement about air resistance] (1) esistance less significant (1) esistance less, therefore greater velocity [or average velocity greater or accelerates for longer] (1)	max 5 QWC 2	[5]
2.	(a)	(i)	$(E_{\rm K} = \frac{1}{2} mv^2 =) 0.5 \times 68 \times 16^2$ (1) = 8700 or 8704(J) (1)		
		(ii)	$(\Delta E_{\rm P} = mg\Delta h =) 68 \times 9.8(1) \times 12$ (1) = 8000 or 8005 (J) (1)		
		(iii)	any three from gain of kinetic energy > loss of potential energy (1) (because) cyclist does work (1) energy is wasted (on the cyclist and cycle) due to air resistance or friction or transferred to thermal/heat (1) KE = GPE + W – energy 'loss' (1) (owtte) energy wasted (= 8000 + 2400 - 8700) = 1700(J) (1)	7	
	(b)	(i)	$(u = 16 \text{ m s}^{-1}, s = 160 \text{ m}, v = 0, \text{ rearranging } s = \frac{1}{2} (u + v) t \text{ gives})$ $160 = \frac{1}{2} \times 16 \times t \text{ or } t = \frac{2s}{(u + v)} \text{ or correct alternative}$ $\frac{2 \times 160}{16} \text{ (gets 2 marks)} (1) = 20 \text{ s} (1)$		
		(ii)	acceleration $a = (\frac{v-u}{t} =)\frac{0-16}{20} \operatorname{ecf}(b)(i)(1) = (-) 0.80 (\mathrm{m s}^{-2})$ resultant force $F = ma = 68 \times (-) 0.80(1) = (-) 54(\mathrm{N})(1)$ or 54.4 or (work done by horizontal force = loss of kinetic energy work done = force × distance gives) force = $\frac{(\operatorname{loss of kinetic})\operatorname{energy}}{(1) = \frac{8700 \mathrm{J}}{20}} \operatorname{ecf}(a)(i)(1) = 54(\mathrm{N})(1)$) 6	
			distance 160 m	, -	[13]